Measures Transforming Traffic Signal Management ITS Washington 2020 Annual Conference December 9th, 2020 **Eddie Curtis, FHWA Office of Operations and Resource Center** ## **Poll Question** Rate your familiarity with Automated Traffic Signal Performance Measures - ☐ Today is the first time I've heard the term - ☐ Introduced to the topic through meetings, conferences, presentations. - ☐ My organization has explored Implementation - ☐ ATSPM has been implemented in my organization - ☐ I'm an active user of ATSPM ## What is High Resolution Data / ATSPM? Source: Eddie Curtis, FHWA Source: https://en.wikipedia.org/wiki/Stopwatch Source: https://diy.stackexchange.com/q ## What is High Resolution Data / ATSPM? Source: Eddie Curtis, FHWA Source: Eddie Curtis, FHWA Elevation ## What is High Resolution Data / ATSPM? Source: Signal Timing Manual Version 2 Source: Signal Timing Manual Version 2 ### **High-Resolution Event Enumerations (Example)** #### **Active Phase Events:** | 0 | Phase | On | |---|-------|--------| | • | | \sim | - 1 Phase Begin Green - 2 Phase Check - 3 Phase Min Complete - 4 Phase Gap Out - 5 Phase Max Out - 6 Phase Force Off - 7 Phase Green Termination - 8 Phase Begin Yellow Clearance - 9 Phase End Yellow Clearance - 10 Phase Begin Red Clearance - 11 Phase End Red Clearance #### **Preemption Events:** - 101 Preempt Advance Warning Input - 102 Preempt (Call) Input On - 103 Preempt Gate Down Input Received - 104 Preempt (Call) Input Off - 105 Preempt Entry Started Source: Chris Day, Iowa State University #### **Detector Events:** - 81 Detector Off - 82 Detector On - 83 Detector Restored - 84 Detector Fault- Other - 85 Detector Fault- Watchdog Fault - 86 Detector Fault- Open Loop Fault http://docs.lib.purdue.edu/jtrpdata/3/ U.S. Department of Transportation Federal Highway Administration ### **Example High-Resolution Data** Timestamp Event Code **Event Parameter** 6/27/2013 1:29:51.1 10 6/27/2013 1:29:51.1 82 5 **Detector 5 ON** 6/27/2013 1:29:52.2 1 2 6/27/2013 1:29:52.2 1 6 6/27/2013 1:29:52.3 6/27/2013 1:29:52.8 82 4 6/27/2013 1:29:52.9 81 4 6/27/2013 1:29:53.3 81 6 6/27/2013 1:29:54.5 81 2 8 2 6/27/2013 1:30:02.2 6/27/2013 1:30:02.2 8 6 6/27/2013 1:30:02.2 33 2 6/27/2013 1:30:02.2 33 6 6/27/2013 1:30:02.2 6/27/2013 1:30:02.2 32 6 6/27/2013 1:30:06.1 10 6/27/2013 1:30:06.1 10 6 **Phase 8 GREEN** 6/27/2013 1:30:08.1 8 6/27/2013 1:30:13.1 32 8 **Detector 5 OFF** 6/27/2013 1:30:15.8 81 5 6/27/2013 1:30:18.5 82 6 6/27/2013 1:30:27.5 81 6 **Phase 8 YELLOW** 6/27/2013 1:30:30.4 Source: Chris Day, Iowa State University U.S. Department of Transportation Federal Highway Administration #### "Do I Have Most of my Vehicles Arriving on Green?" Coordination Diagram Concept 9 Source: Chris Day, Iowa State University U.S. Department of Transportation Federal Highway Administration ### **Coordination Diagram (24 Hours)** Day, C.M., D.M. Bullock, H. Li, S.M. Remias, A.M. Hainen, R.S. Freije, A.L. Stevens, J.R. Sturdevant, and T.M. Brennan *Performance Measures for Traffic Signal Systems: An Outcome-Oriented Approach.* West Lafayette, Indiana: Purdue University, 2014. ## **Poll Question** What's the most common trigger for traffic signal retiming - ☐ Performance monitoring indicates retiming is necessary - ☐ Annual or Other Scheduled Frequency - **□** Complaints - ☐ Emissions have exceeded a Threshold #### **Traditional Practice** ## Traditional Traffic Signal "Operations" Source: INDOT All of our metrics are based on outputs not Objectives # How is High Resolution Data transforming Traffic Signal Operations? Source: http://www.dot.state.mn.us/rtmc/ - MnDOT Regional TMC #### **An Opportunity to Transform the Practice** # Goals, Context and Objectives can Drive all Areas of a Traffic Signal Program | Goal | Context | Objective / Strategy | Performance Measure | |--------------------|---|---|---| | Safety | Network: CBD, Urban, Suburban (Linear Arterial, Grid, Interchange) | Safely Transfer Right of Way | Yellow and Red
ActuationsArrivals on RedPed/Bike Delay | | Mobility
Equity | User mix: peds, bike, transit, vehicle, freight Traffic demand: Uncongested (Light, moderate, heavy) | Equitable distribution of Green Time Smooth flow, Peds/bike Convenience/Comfort Transit Efficiency | Purdue Coord Diagram, Arrivals on Green/Red Split Failure, ped/bicycle delay vehicle delay Queue length Split Monitor Progression Quality Travel Time and Average Speed Priority Details | | | Traffic demand:
congested | ThroughputQueue management | Vehicle VolumesQueue lengthOversaturation Severity
Index | | Goal | Context | Objective / Strategy | Performance Measure | | |----------|---|---|---|--| | Safety | Network: CBD, Urban, Suburban (Linear Arterial, Grid, Interchange) | Safely Transfer Right of Way | Yellow and Red
ActuationsArrivals on RedPed/Bike Delay | | | Mobility | User mix: peds, bike, transit, vehicle, freight Traffic demand: Uncongested (Light, moderate, heavy) | Equitable distribution of Green Time Smooth flow, Peds/bike Convenience/Comfort Transit Efficiency | Purdue Coord Diagram, Arrivals on Green/Red Split Failure, ped/bicycle delay vehicle delay Queue length Split Monitor Progression Quality Travel Time and Average Speed Priority Details | | | | Traffic demand:
congested | ThroughputQueue management | Vehicle VolumesQueue lengthOversaturation Severity
Index | | | | congested | Queue management | 3 | | | Goal | Context | Objective / Strategy | Performance Measure | |------------------|---|---|---| | Safety | Network:
CBD, Urban,
Suburban (Linear
Arterial, Grid,
Interchange) | Safely Transfer Right of Way | Yellow and Red
ActuationsArrivals on RedPed/Bike Delay | | Mobility Equity | User mix: peds, bike, transit, vehicle, freight Traffic demand: | Equitable distribution of Green Time Smooth flow, Peds/bike | Purdue Coord Diagram, Arrivals on Green/Red Split Failure, ped/bicycle delay vehicle delay Queue length Split Monitor | | | Uncongested
(Light, moderate,
heavy) | Convenience/Comfort Transit Efficiency | Progression Quality Travel Time and Average Speed Priority Details | | | Traffic demand: | ThroughputQueue management | Vehicle VolumesQueue lengthOversaturation Severity | | | 331193333 | 24040 management | Index | #### Resources - Implementation Guidance - Lessons learned from early implementations - Connecting objectives/goals to performance measures - Identifying how to make the best use of SPM #### EXHIBIT 2-2. OBJECTIVE-BASED CATEGORIES FOR SIGNAL PERFORMANCE MEASURES | CATEGORY | OBJECTIVE(S) | |--|---| | 1
COMMUNICATION | Maximize number of connected intersections | | 2
DETECTION | Maximize number of functioning detectors | | 3
INTERSECTION /
UNCOORDINATED
TIMING | Minimize delay for transportation system users
(e.g., vehicles, bicycles, pedestrians) Improve safety | | 4
SYSTEM /
COORDINATED
TIMING | Improve progression | | 5
ADVANCED
SYSTEMS AND
APPLICATIONS | Minimize delay for modes with preferential treatment (e.g., rail, emergency vehicles, transit, trucks) Manage traffic variability | Source: Chris Day, Iowa State University #### **Objectives Driven Traffic Signal Programs & ATSPM** ## FHWA Arterial Management Website https://ops.fhwa.dot.gov/arterial_mgmt/ http://tinyurl.com/signalmoe http://www.trb.org/Publications/Blurbs/173121.aspx Source: FHWA Source: FHWA #### OST MATRIX - UNCONGESTED | MIEXI | O DBJECTIVES | CONTEXT | | STRATEGY | CONTEXT | | TACLC | |-------------|--|-----------------------|-------------------------------------|-------------------------------|--|-----------------------------|--| | | Intersection - Equitable Distribution of Gre
To provide access equity, the demand for | | Light flow | Minimize phase failures | | | Design passage time and maxigreen to reduce chase failures | | | phases will be handled equitably by serving all
provenents regularly and not providing
preferential treatment to coordinated
novements to the extent the, delays and
stors of other movements are significantly
innessed. To do this optertive function is to | | Moderate flow | Reduce wait time | | | Design passage time and max green to reduce time | | | | In network | Moderate flow | Minimize delay | | | Webster's Method | | | | | | | | | Lighway Capacity Manual's Quick Estimation Method | | | balance delays. Strategies to prevent quet
overflow on minor movements may be | | | | | | Critical Movement Analysis | | | needed. | | Mobility > Access | Maximize coordinated split | Some spare papacity at signal | | Design minimum split for non-coordinated phase | | | Notwork - Smooth How | Design Netwo | rk Cycle Length | | | | | | | This dejective seeks to provide a green ba
along an arterial road, in one or both | nd Linear arteria | Prodominantly
one-way flow | One-way progression | Any intersection spacing | | Consensus cycle length | | | directions, with the relationship between | | Two-way flow | Two-way progression | Even intersection spacing | | Resonant cycle length | | | intersections arranged so that once a plat
starts moving it rarely slows or stops. This | | | | Unever intersection spacing | Sufficient left turn phases | Resonant cycle length using overage spacing | | | rray involve holding a platoon at one | | | | | Tew/ho left turn phases | Consensus cycle length | | ⊑ | 를 intersection until 't can be released and no
으 experience downstream stops. It may also | Grie | | For 1-way progression | Even intersection spacing | | Quarter cycle | | 콩 | involve operating non-coordinated phase | s at Design Inters | action Sp 'ts | | | | | | Uncongested | 로 a high degree of saturation (by using the
: shortest possible green), within a constrai | Any network | | Progression | Trave to the area more important than travel through the area | t | Use equitable distribution of green | | est
e | preventing or minimizing phase failures and
overflow of turn bays with limited length, and
with spare time in each cycle generally | | | | Travel through the area more important than travel to the area | | Maximize accordinated splits | | ă. | reverting to the co-ordinated phases. | Design Offset | 5. | | | | | | | | | Predominantly
one-way flow | One-way progression | Minimal side street turning traffic | ; | Besign offsets for first can | | | | | | | Moderate side street turning traff | iic . | Casign offsets for first car with queue clearance | | | | | Two-way flow | Two-way progression | Equal/favorable intersection specing | | Resonant offsets | | | | | | | Unequal/unfavorable intersection specing | Sufficient left turn phases | Resonant offsets with lead lag phasing | | | | @rio | One way streets | Four-way progression | Even intersection spacing | | Quarter cycle | | | | Design Phase | Sequence | | | | | | | | Amerials and
grids | Signals without
left turn phases | Progression | | | Use default chase sequence (no options) | | | | | | Two- and four-way progression | Excellent bandwidth | | Use default chase sequence | | | | | turn phases | | Poer bandwidth | | Use lead- ag phasing to maximize bandwidth | | | intersection - Equitable Treatment by Mod | le Isplated | | (not covered) | | | | | | 문용
Network - Programmed Stoc | In Network | | (not covered) | | | | | | Many Other Objectives | _ | | (not covered) | | | | #### OST MATRIX - UNCONGESTED | CNIEXI | OBJECT VES | | CONTEXT | | STRATEGY | CONTEXT | LACTIC | |-----------|--|---|---------------------------------------|--------------------------------|----------------------------------|---------------------------------|---| | | Intersection - Throughout | | nappropriate timing | | Fig. Jiming | | As needed (meet CST) | | | | This policutive seeks to provide a green split this provides the maximum throughput at the stop but maintaining a high degree of saturation without causing unacceptable conjection or celexion. The non-coordinated chasses would typically be vehicle actuated and operated at a high degree of naturation (by using the stop test, possible green), within a constraint of preventing or minimizing phase failures and overflow of turn boys with limited length, and with space time in each cycle generally reversing to the | | | Fix equipment | | As needed (meet functions ity) | | | | | -roblematic geometry | Storage bay soll back | Mitigate problematic
geometry | | Short bay method | | | | | | Storage bay blocking | Mitigate problematic
geometry | | Lead/Lag phasing | | | | coordinated preses. | | Both spillback and
blocking | Mitigate problematic
geometry | | Phase reservice | | | | | Excess demand | | Min'mize unused | Try this first | Aggressive passage times | | | | | | | green | -arly phase terminations | Variable gap times (with aggress
minimum gap) | | | ₹ | | | | | Phase stays green too long | Cap the max greens | | _ | Where
tight g
phases
interse
lanes,
This of | | | | Improve lone flow | Rows inconsistent with lanes | Change lane striping | | ⊵, | | | | | | In coordinated network | Drop out of coordination | | Congested | | | | | | Multilane approaches | Lane-by-lane detection | | St | | | | | | Any/all | Think like HCM adjustment fact: | | ස | | Where there are closely spaced intersections, such as at a diamond interchange or within a tight gird network, and especially when a short block is ted by movements from various phases, the primary objective is do ensure that queues do not block upstream. | | Two-way flow | Gating | Sottleneck Intersection(s) | OSTs from Intersection –
Throughput | | | | | | | | Upstream of the Bottleneck | Cycle/Splits/Offsets for actilene queue relief | | | | intersections or movements (such as occurs when a left turn bay spills over into adjacent lanes, or left turn gueues exceed the intersection spacing at a tight diamond interchange). | | Predominately one-
way flow | One-way gating | Light Side/Midblock Turns | Lasticar | | | | This often requires constraints of locky linguish and phase lengths to ensure that a large
plateon does not enter a short blocky linguish stored within that block any work for a
subsequent given phase. It may also involve in "gating" a movement is
stored at an intersection simply to look it in a postion that has sufficient queuing. | | | | Moderate Side/Midblock
Furns | Simultaneous offsets | | | | | | | | Heavy Side/Midblock Turns | Negative offsets | | | | | Safety issues from
queue spillback | | Prevent unsafe
quedes | | Cycle/Splits/Offsets to serve
priority movements | | | 5 × | Intersection - Preferential Distribution of Green | | | (not covered) | | | | | ≣.8 | Network - Priority to Arterial | | | (not covered) | | | | | <u> </u> | Many Other Objectives | | | (not covered) | | | ## **Questions?** Eddie Curtis, FHWA <u>Eddie.Curtis@dot.gov</u> Source: FHWA